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COMMENT 

Remarks on duality, lattices and the Sierpinski gasket 

H Nencka-Ficek 
Institute of Molecular Physics, Polish Academy of Sciences, Poznah, Smoluchowskiego 
17/19, Poland 

Received 17 February 1986 

Abstract. Duality constructions for the Sierpinski gasket and other fractals are studied. 
Coxeter's definition of a dual lattice is used to prove the existence of two kinds of dual 
lattice for the Sierpinski gasket. 

An advantage of using the dual transformation as a tool for investigating the phase 
structure and nature of a variety of systems in quantum field theory and statistical 
mechanics is unquestionable (Kramers and Wannier 1941, Onsager 1944, Wegner 1971, 
Kadanoff and Ceva 1971, Feynman 1972, Balian et a1 1975, Fradkin et a1 1978, Drouffe 
and Itzykson 1978, Itzykson 1979, Savit 1980, Dhar 1981, Melrose 1983). The reason 
is that, by use of the duality transformations, a high temperature region of one theory 
is transformed into a low temperature region of the other or, in particular cases, into 
the same. Hence one can obtain some information about the nature of the theory 
under investigation. In case of the self-duality of a model, the critical temperature 
becomes known. Therefore this kind of transformation can be treated as a powerful 
method for analysing the position of the points of phase transitions and investigating 
the phase structure of theories. 

As fractals can simulate irregularly shaped materials (Mandelbrot 1977, Kapitulnik 
and Deutscher 1982) or some processes existing in nature (Witten and Sander 1981, 
Alexander and Orbach 1982, Gefen et a1 1983, Given and Mandelbrot 1983, Suzuki 
1983, Meakin 1983, Rammal and Toulouse 1983, Nadal et a1 1984, Kolb and Jullien 
1984, Blumen et a1 1984) it would be interesting to study their properties and, for 
example, the phase structure of fractal-spin systems (Dhar 1981). This is the motivation 
for dealing with dual lattices and transformations for fractal systems. 

Recently, discussion of a problem connected with duality for fractals has appeared 
(Nencka-Ficek 1985, Melrose 1986). This comment concerns the above problem. 

Let us begin this comment with a systematic review of definitions and notation. 
We assume that the only criterion to be fulfilled while constructing the dual for a given 
system is conservation of its topological properties. More precisely, if X is a set of 
points and t a topology, then the pair ( X ,  t )  is a topological space T. Any topological 
space T can be characterised uniquely by a set P = { p l ,  p z ,  . . . , pk} ( k  = 1,2, . . .) of 
its topological invariants p ,  i.e. its topological properties which are conserved under 
homeomorphisms. A dual transformation f is then a continuous one-to one function 
such that 

f : T - T *  
p.. p* 

where T* is a dual topological space with P* its set of invariants. 
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Let us consider an example. Let T = ( X ,  t )  be a topological space such that 
X = "{O, 1) is a Cantor set and t is a Tychonoff topology (Kuratowski 1968, Levy 
1979). T is a perfect, compact, totally disconnected Hausdorff space. Since the set P 
of topological invariants is supposed to be conserved while constructing a dual to the 
Cantor space, then a new topological space T* is a perfect, compact, totally discon- 
nected Hausdorff space as well. 

Before considering other dual lattices, we would like to present in a logical way 
some definitions which allow us to use and justify this general method of thinking. 
Let us introduce the definition of a graph. 

Dejni t ion 1. A graph G (Massey 1984) is a topological space T consisting of a set X 
of one-dimensional edges Z,J such that the boundary dZ,J is a two-element set { e , ,  e,}, 
with e , ,  e, being vertices. More precisely, G is a Hausdorff space. 

We can now connect the above considerations concerning topological spaces with 
some lattice problems. In order to do this we present the following. 

Remark. Any lattice L, considered as a kind of graph G, can be viewed as a topological 
space T (Harary and Palmer 1973). 

Dejni t ion 2. A two-dimensional lattice L,,, is a system of ordered pairs { i , j }  ( i  = 
1 , .  . . , m ; j  = 1 , .  . . , n )  of vertices e i ,  eJ, such that two vertices e , ,  eJ are nearest neigh- 
bours if the Euclidean distance between them is unity. Therefore the lattice L,," is a 
direct product of two one-dimensional lattices L ,  and L, (Harary and Palmer 1973, 
Dhar 1977). 

However, while dealing with spin system problems on lattices one mainly uses regular 
tilings (Kramers and Wannier 1941, Onsager 1944, Fradkin et a1 1978, Wegner 1971, 
Savit 1980). A precise definition of regular tiling has been given by Coxeter. 

Dejni t ion 3. Let { p ,  q }  be a set of p-gons such that there is a number q of the p-gons 
around each vertex ei of a given system and the following relation holds: 

(1 -$) 77 = s 27r 

then the { p ,  q }  system is a regular tiling of a Euclidean plane (Coxeter 1948, 1969). 

In the Euclidean case, as we can easily see, three regular tilings only exist {3,6}, {4,4} 
and {6,3}, i.e. triangular, square and honeycomb lattices respectively. 

Considering some spin system on a lattice, there is a necessity to introduce some 
dual lattices and transformations (Feynman 1972, Balian et a1 1975, Drouffe and 
Itzykson 1978). Coxeter's definition of duality is as follows. 

Dejni t ion 4. The dual to { p ,  q} is a tiling { q , p }  whose edges Z t  are perpendicular to 
the edges P,, of { p ,  q} in such a way that they cross PIJ in their middles (Coxeter 1948, 
1969). 
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A similar definition was applied (Kramers and Wannier 1941, Onsager 1944) in 
connection with the problem of an Ising model on a square lattice. 

Now we apply the above definitions to the case of the Sierpinski gasket. The 
Sierpinski gasket (Sierpinski 1975, Kuratowski 1968), Mandelbrot 1977) is constructed 
as follows, Let 0 be an equilateral triangle. We divide it into four congruent triangles, 
To,  T i ,  T2 having their bases down, and a middle U, with its base up. To,  Tl , T2 have 
a common vertex with 0. We call this process of partitioning 0 the first step of 
iteration. Now we divide each of the To, Tl, T2 triangles into four congruent triangles 
in a similar way. We obtain nine triangles T,, To i , .  . . , T Z 2 ,  with bases down and 
having a vertex in common with To, Ti or T2 and three triangles Uoo, Uol, U,, having 
bases up. This is the second step of construction. Iterating 0 to infinity, one obtains 
the Sierpinski gasket G. The precise definition of it is 

G = uBal...ak 
where 

and Fr means a boundary of T. 
Let us take into account the first remarks about the conservation of the topological 

properties of a space T, while constructing the dual one T*. We consider the Sierpinski 
gasket as a topological space T with some set P of the topological properties. The 
Sierpinski gasket is a compact locally connected topological space (Kuratowski 1968) 
being a one-dimensional curve (Sierpinski 1975), the degree of deformation of which 
is estimated by a Hausdorff dimension d = In 3/ln 2 (Mandelbrot 1977). 

Therefore, taking the definition of the duality, we construct a compact quasi-Bethe 
lattice (Nencka-Ficek 1985) and a locally connected topological space with the Haus- 
dorfl dimension d* = In 3/ln 2. 

This is one possibility of constructing the dual system to G. The other dual lattice 
to G (by applying the above definitions) is obtained if the dual vertices are put in the 
middle of every edge P, of the Sierpinski gasket. However, in the limit, this dual lattice 
just becomes the Sierpinski gasket. 

Summarising, one should say that the only criterion for having a dual object or a 
dual lattice; fractal or not, is that this dual object, treated as a topological space, must 
have the same set of topological properties P as the original one. 

The examples of some topological invariants (Kuratowski 1968, Levy 1979) are 
connectedness, local connectedness, compactness, being a meager set or not, and so 
on. Hence, if the original object is a compact one then its dual object must be compact 
as well. If the original object is a meagre set then its dual must be meagre as well. 

Locally connected fractals characterised by a fractal dimension d, such that 1 < d G 2 
being nowhere dense continua have as the dual locally connected spaces being nowhere 
dense continua as well. 

I would like to thank Professor Morkowski for discussions. This work was supported 
by Project MRI9. 
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